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Abstract:  In this paper, the different types of Schur convexities of generalized Heron mean, similar 

product type means and their dual forms in two variables are discussed using strong mathematical induction 

by grouping of terms. 
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I. INTRODUCTION: 
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These are respectively called the Identric, Logarithmic and Heron means. In [5, 22, 23], V. Lokesha et al. 

studied extensively and obtained some remarkable results on the weighted Heron mean, the weighted Heron 

dual mean and the weighted product type means and its monotonicities. Shi et al.[15], discussed the Schur-

convexity and Schur-geometric-convexity of a further generalization of the Heronian means given by 
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Recently, Li et al.[3] discussed the Schur-convexity and Schur-harmonic-convexity of the generalized 

Heronian means with two positive numbers. In [19, 21], Zhang et al. gave the generalizations of Heron mean, 

similar product type means and their dual forms. For two variables, the above means are as follows:  
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Where k is a natural number.  Authors have proved that H(a, b; k) and I ∗ (a, b; k) are monotonic 

decreasing functions and H∗ (a, b; k) and I(a, b; k) are monotonic increasing functions with k and also 

established the following limiting values of these means. 
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The Schur convex function was introduced by I Schur, in 1923 and it has many important applications in 

analytic inequalities. In 2003 X.M. Zhang proposed the concept of “Schur-Harmonically convex function” 

which is an extension of “SchurConvexity function”. Schur-geometrically convexity for different means is 

discussed in [13, 20]. The detailed discussion on convexity and Schur convexity can also be found in ([2]-

[12]).  

II. DEFINITION AND LEMMAS: 

   In this section, we recall the definitions and lemmas which are essential to develop this paper.  

Definition 2.1. [6], [17] Ω ⊆ Rn is called symmetric set if x ∈ Ω implies Px ∈ Ω for every n × n permutation 

matrix P.  

   The function ϕ : Ω → R is called symmetric if for every permutation matrix P, ϕ(P x) = ϕ(x) for all x ∈ Ω. 

Lemma 2.1. [24] Let Ω ⊆ Rn be symmetric with non-empty interior geometrically convex set Ω0 and let    

ϕ : Ω → R+ be continuous on Ω and differentiable in Ω0. Then ϕ is Schur-geometrically convex (Schur-

geometrically concave) on Ω if and only if ϕ is symmetric on Ω and 
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holds for any x = (x1, x2, ..., xn) ∈ Ω0. 

Lemma 2.2. [24] Let Ω ⊆ Rn be symmetric with non-empty interior set Ω0 and let ϕ: Ω → R+ be continuous 

on Ω and differentiable in Ω0. Then ϕ is Schur convex (Schur concave) on Ω if and only if ϕ is symmetric 

on Ω and  
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holds for any x = (x1, x2, ..., xn) ∈ Ω0. 

 Lemma 2.3. [24] Let Ω ⊆ Rn be symmetric with non-empty interior harmonic convex set Ω0 and let           

ϕ: Ω → R+ be continuous on Ω and differentiable in Ω0. Then ϕ is Schur-harmonic convex (Schur-harmonic 

concave) on Ω if and only if ϕ is symmetric on Ω and  
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III. MAIN RESULT: 

 In this section, the various kinds of Schur convexities and concavities of generalized Heron mean, similar 

product type means and their dual forms in two variables are discussed using strong mathematical induction 

[14] with grouping of terms.  

Theorem 3.1. Let a, b be positive real numbers and k be non- negative integer. Then generalized Heron 

mean similar to product type I (a, b; k)) is 

  (1) Schur-geometrically convex (concave) for all values of k and a ≤ (≥) b.  

  (2) Schur convex (concave) for all values of k and a ≤ (≥) b.  

  (3) Schur-harmonic convex (concave) for all values of k and a ≥ (≤) b.  

Proof: The proof is established by discussing the following three cases.  

Case (i). For a > b > 0 and k be non-negative integer, we have the generalized Heron mean similar to 

product type  
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Now, we shall prove that   ≥ 0 for all positive integral values of k, by strong mathematical induction.  
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 Taking logarithm on both sides and differentiating partially w.r.t a and multiplying by a, then we have  
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Thus, on grouping first and last term, second and second to last term, and so on in , we get 
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Hence I (a, b; k) is Schur-geometrically convex for all positive integral values of k. 

 

Case (ii). For a > b > 0 and k be non-negative integer, we have the generalized Heron mean similar to 
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Now, we shall prove that   ≤ 0 for all positive integral values of k, by strong mathematical induction 

        For k = 1,                                    
2
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 Taking logarithm on both sides and differentiating partially w.r.t a and b, then we have  
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Thus, on grouping first and last term, second and second to last term, and so on in , we get 
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Hence I(a, b; k) is Schur concave for all positive integral values of k.  

 

Case (iii). For a > b > 0 and k be non-negative integer, we have the generalized Heron mean similar to 

product type,  
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Now, we shall prove that 0 for all positive integral values of k, by strong mathematical induction.  

For k = 1
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Thus, on grouping first and last term, second and second to last term, and so on in , we get 
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Hence I (a, b; k) is Schur-harmonic convex for all positive integral values of k.  

  With similar arguments follows the proof of the following theorems.  
 

Theorem 3.2. Let a, b be positive real numbers and k be non- negative integer. Then generalized dual form   

                       of Heron mean similar to product type  kbaI ;,  is 

 (1) Schur-geometrically convex (concave) for all values of k and a ≥ (≤)b . 

 (2) Schur concave (convex) for all values of k and a ≤ ()≥b .  

 (3) Schur-harmonic convex (concave) for all values of k and a ≥ (≤)b.  

Theorem 3.3. Let a, b be positive real numbers and k be non-negative integer. Then generalized Heron  

                       mean  kbaH ;,  is  

 (1) Schur-geometric convex (concave) for all values of k and a ≥ (≤)b .  

 (2) Schur concave (convex) for all values of k and a ≤ (≥)b.  

 (3) Schur-harmonic convex (concave) for all values of k and a ≥ (≤)b.  

Theorem 3.4. Let a, b be positive real numbers and k be non-negative integer. Then generalized dual form    

                       of Heron mean  kbaH ;, is  

 (1) Schur-geometrically convex (concave) for all values of k and a ≥ (≤) b.  

 (2) Schur concave (convex) for all values of k and a ≤ (≥)b .  

 (3) Schur-harmonic convex (concave) for all values of k and a ≥ (≤) b.  
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